MORE ABOUT CAOS:

Premises:

$$
\begin{array}{r}
\sum_{n} u_{n} \mid \alpha>=u_{1} \cdot \alpha+u_{2} \cdot \alpha+\cdots+u_{n} \cdot \alpha \\
\left\langle u_{i} \mid u_{j}\right\rangle=\delta_{i j}=1 \text { si } i=j \\
\left\langle u_{i} \mid u_{j}\right\rangle=\delta_{i j}=0 \text { si } i \neq j
\end{array}
$$

$\left|u_{i}><u_{j}\right|$ equally.
Suppose that $u_{n}=(a, b, c) i \widetilde{u_{n}}=(-a,-b,-c)$ i $\left\langle u_{n} \mid \widetilde{u_{n}}\right\rangle=1$ pel compliance with the ortonormality (linearly independent vectors or canonical basis in a grup). It alswo happens $\sum_{n}\left|u_{n}><\widetilde{u_{n}}\right|=\sum_{n}\left|\widetilde{u_{n}}><u_{n}\right|=1 \mathrm{n}=\mathrm{n}$.

El scalar product of 2 vectors always give a number.
Next we express F as a wave function $=\sum_{n} c_{n} \cdot u_{n}$
Conceive the Liouville or Hamilton equation

$$
\begin{aligned}
& \left|\rho(\mathrm{t})>=\sum_{n}\right| u_{n}>e^{-i L_{n} t}<u_{n} \mid \rho\left(\mathrm{t}_{0}\right)>\text { or } \\
& \Psi(\mathrm{t})=\sum_{n}\left|u_{n}>e^{-i E_{n} / h}<u_{n}\right| \psi\left(\mathrm{t}_{0}\right)>\text { respectively. }
\end{aligned}
$$

Each new " t " represents another $\psi(\mathrm{t})$. when $\mathrm{n} \rightarrow \infty$, the results are more reliable for statistics; as if measure the Schrödinger equation " n " times: for every " n ", $\widehat{H} . \psi(t)=$ $E . \psi(t)$. then, the caos is fulfilled.
$\psi_{n+1}(\mathrm{t})=U_{t} \cdot \psi_{n}(\mathrm{t} 0)$
Knowing that (a b c) $\left[\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \\ \alpha_{31} & \alpha_{32}\end{array}\right]=\left(\begin{array}{ll}e & d\end{array}\right)$ where "e" i "d"
are the values of energy
assuming that (a b c) are functions of $\psi\left(t_{0}\right)_{n} \mathrm{~d}^{\prime} 1$ an($\mathrm{n}=3$) and we only have 2 types of energy.

We can assume that the exponential satisfies the equation Schrödinger for $n=1, \ldots, n$. In the case of Hamilton,

Probably $e^{-i E_{n} / h} \rightarrow$ function (1), whereas $<u_{n}\left|\psi\left(\mathrm{t}_{0}\right)\right\rangle$ is the scalar product and gives an own value of that function (1). While $\Psi(\mathrm{t})$ is the result of the vectorial product [$\mathrm{w}=\mathrm{u} \times v$] $e^{<a\left|\alpha_{11}\right\rangle+<b\left|\alpha_{21}\right\rangle+<c\left|\alpha_{31}\right\rangle}=e^{d}$ and the same for e^{e}. (remember $\mathrm{F}=\sum_{n} c_{n} \cdot u_{n}$).

We can measure $\mathrm{de} t=1$ to the time we want.

Because of its mission to which I have been subjected to other voluntary and sometimes forced, I purchased a docile temperament. I have an accentuated sensation of who sends and who obeys. For qualified people, the only thing I can do is learn.
Depending of many events: "n / p"
Chance They separate by a small border

Chaos
guidelines; no re observations of a single event:
etc

Random: Univers and initial awards (premises).

We take as a study an object: a rugby ball:

or also a brick:

The vibrational rotation: when you turn using the axis S we find that the rotation is less homogeneous than using reference axis L.

Therefore in $U(t) . \psi(t o)=\psi(t)$, that equates the chaos with the stability of when $n \rightarrow \infty$ (that is when $n \rightarrow n+1$) the events become connected between them, then each case " n ": $e^{a_{n}}$, it multiplies and does not add independently, forming: $e^{a_{1}} . e^{a_{2}} \ldots e^{a_{n}}$; That is , they are connected, since they will never pass 2 particles there (or, what is the same, there will never be the same probability!) .

